Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.13.507833

ABSTRACT

Identifying host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of coronavirus disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify pro-viral host factors for highly pathogenic human coronaviruses. Very few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception. Although its role in coronavirus infection was completely unknown, DYRK1A encodes Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A and regulates cell proliferation, and neuronal development, among other cellular processes. Interestingly, individuals with Down syndrome overexpress DYRK1A 1.5-fold and exhibit 5-10x higher hospitalization and mortality rates from COVID-19 infection. Here, we demonstrate that DYRK1A regulates ACE2 and DPP4 transcription independent of its catalytic kinase function to support SARS-CoV, SARS-CoV-2, and MERS-CoV entry. We show that DYRK1A promotes DNA accessibility at the ACE2 promoter and a putative distal enhancer, facilitating transcription and gene expression. Finally, we validate that the pro-viral activity of DYRK1A is conserved across species using cells of monkey and human origin and an in vivo mouse model. In summary, we report that DYRK1A is a novel regulator of ACE2 and DPP4 expression that may dictate susceptibility to multiple highly pathogenic human coronaviruses. Whether DYRK1A overexpression contributes to heightened COVID-19 severity in individuals with Down syndrome through ACE2 regulation warrants further future investigation.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.22.440848

ABSTRACT

SARS-CoV-2 can cause a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of the host factors mediating viral infection or restriction is critical to elucidate SARS-CoV-2 host-pathogen interactions and the progression of COVID-19. To this end, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. These screens uncovered proviral and antiviral host factors across highly interconnected host pathways, including components implicated in clathrin transport, inflammatory signaling, cell cycle regulation, and transcriptional and epigenetic regulation. Mucins, a family of high-molecular weight glycoproteins and the main constituent of mucus, are central components of a prominent viral restriction pathway that we identified. We demonstrate that multiple membrane-anchored mucins are critical inhibitors of SARS-CoV-2 entry and are upregulated in response to viral infection. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and suggests interactions between SARS-CoV-2 and airway mucins of COVID-19 patients as a host defense mechanism.


Subject(s)
Respiratory Distress Syndrome , Severe Acute Respiratory Syndrome , Virus Diseases , COVID-19 , Respiratory Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL